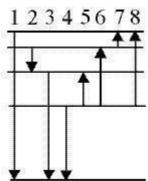
Test



Тест по ядерной физике

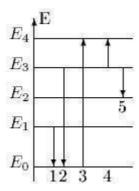
Тест по ядерной физике

1. C Kako	и скоростью должен лететь протон, чтооы его масса равнялась массе покоя α-частицы піα—4пір: с - скорость света.
1)+	0,97 c
2)	0,6 c
3)	0,8 c
4)	1,04 c
 больше больше больше больше 	те все верные утверждения. Чем больше номер стационарной боровской орбиты в атоме, тем е кинетическая энергия электрона; е потенциальная энергия электрона; е заряд электрона; е полная энергия электрона; е скорость электрона.
1)	3и5
2)	1, 2 и 4
3)	2 и 3
4)+	2 и 4
3. Скольк	ко электронов содержится в электронной оболочке двухзарядного положительного иона гелия ?
	$_{2}^{4}He$
1)	3
2)+	0
3)	2
4)	1
	первой боровской орбиты электрона в атоме водорода равен 0,5•10-10м, второй, третьей и четвертой соответственно в 4, 9 и льше. На какой орбите скорость электрона наибольшая?
1)	3
2)	2
3)	4
4)+	1
	соотношение между центростремительными ускорениями электрона a1, a2, a3 на трех стационарных боровских орбитах дорода a1 радиусы которых r1
1)	a1
2)+	a1>a2>a3
3)	a1=a2=a3
4)	a2>a3>a1
	первой боровской орбиты электрона в атоме водорода равен 0,5•10-10 м, второй, третьей и четвертой соответственно в 4, 9 и льше. На какой орбите кинетическая энергия электрона наибольшая?
1)	3
2)	2
3)+	1
4)	4

7. На рисунке представлена диаграмма энергетических уровней некоторого атома и несколько переходов между ними. Какой стрелкой указан переход с испусканием фотона наибольшей частоты?

- 1) 2
- **2)**+ 1
- 3) 5
- 4) 7

8. Сколько электронов находится в электронной оболочке однозарядного положительного иона изотопа углерода?


- 1) 7
- **2)+** 5
- 3) 13
- 4) 6

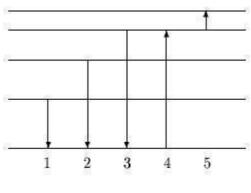
9. Чему равно число электронов в электронной оболочке атома изотопа кислорода?

 $^{17}_{8}O$

- **1)**+ 8
- 2) 6
- 3) 17
- 4) 9

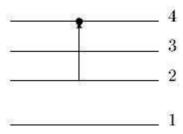
10. На рисунке представлена диаграмма энергетических уровней атома. Какой стрелкой обозначен переход с излучением фотона наибольшей частоты?

- **1)**+ 2
- 2) 1
- 3) 3
- 4) 4


44	T T				U				
11.	Из	приведенных	ниже	УТВЕРЖЛЕН	ии vka	ажите	постулаты	теории	Fona.
		приведенивии		Jibepingen			110 CI JULIA DI	reopini	Dopu.

- 1) в атомах есть избранные стационарные орбиты, двигаясь по которым электроны не излучают свет;
- 2) в атомах есть избранные стационарные орбиты, двигаясь по которым электроны излучают свет;
- 3) атомы излучают свет квантами при переходе с одной стационарной орбиты на другую;
- 4) при излучении света электроны движутся по спирали, постепенно теряя энергию и приближаясь к ядру.
 - 1) 1, 2 и 4
 - **2)**+ 1 и 3
 - 3) 2 и 4
 - 4) 1,2и3
- 12. Какие утверждения относительно электрических свойств атома верны?
- 1) ядро атома заряжено положительно;
- 2) ядро атома заряжено отрицательно;
- 3) заряд электронной оболочки положителен;
- 4) заряд электронной оболочки отрицателен;
- 5) в ядре сосредоточен почти весь заряд атома;
- 6) в электронной оболочке сосредоточен почти весь заряд атома;
- 7) заряды ядра и электронной оболочки равны по величине и противоположны по знаку.
 - 1) 2,3и6
 - 2) 2,3и5
 - **3)**+ 1, 4 и 7
 - 4) 2,3 и 7
- 13. Какие из следующих утверждений не соответствуют модели атома Томпсона?
- 1) атом положительно заряженный шар с равномерным распределением заряда по объему;
- 2) электроны распределены по поверхности положительно заряженного шара;
- 3) суммарный заряд электронов равен заряду шара;
- 4) атом положительно заряженный шар, причем весь его положительный заряд распределен по поверхности шара;
- 5) электроны распределены по объему положительно заряженного шара.
 - **1)**+ 4и2
 - 2) 4, 5, 3
 - 3) 1, 2, 3
 - 4) 1, 3, 5
- 14. Какая часть атома вносит основной вклад в рассеяние альфа-частиц в опытах Резерфорда?
 - 1)+ атомное ядро
 - 2) отдельные протоны
 - 3) отдельные электроны
 - 4) электронная оболочка в целом
- 15. Сравните число электронов (n1 и n2) в электронных оболочках изотопов азота и

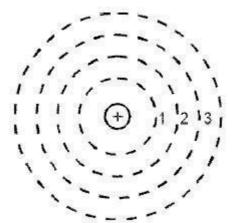
 $\frac{14}{7}N$


- 1) n1= n2+2
- **2)**+ n1= n2
- 3) n1 = n2 1
- 4) n1= n2+ 1

16. На рисунке представлена диаграмма энергетических уровней некоторого атома. Какой стрелкой обозначен переход с излучением фотона наибольшей частоты?

- 1) 2
- 2) 4
- 3) 1
- **4)**+ 3

17. Атом возбуждается со второго на 4-й энергетический уровень, как это показано на рисунке. Сколько всего линий можно наблюдать в спектре излучения этого атома?



- 1) 8
- 2) 4
- **3)**+ 6
- 4) 5

18. На какую стационарную орбиту переходят электроны в атоме водорода при испускании видимого света?

- 1) 3
- 2) 4
- **3)**+ 2
- 4) 1

19. На рисунке изображены условные электронные орбиты атома. На каких орбитах электроны имеют наибольшую и наименьшую скорость?

- 1) на 4-й наибольшую, на 1-й наименьшую
- 2)+ на 4-й наименьшую, на 1-й наибольшую
- 3) на 3-й наибольшую, на 2-й наименьшую
- 4) на всех орбитах имеют одинаковую скорость

20. Энергия ионизации атома кислорода равна 16,5 эВ. Найдите максимальную длину волны ионизирующего излучения (нм). $h = 4,1 \cdot 10 \cdot 15$ эВ \cdot с.

- 1) 50
- **2)+** 75
- 3) 500
- 4) 400

21. Какова энергия ионизации атома кислорода (эВ), если его ионизация начинается при частоте падающего света $3,4 \cdot 1015\Gamma$ ц. $h = 4,1 \cdot 10-15$ эВ \cdot с.

- 1) 11,3
- 2) 9,2
- **3)**+ 13,9
- 4) 18.6

22. Энергия фотона, испускаемого атомом при переходе атома из состояния с энергией E1 в состояние с энергией E2 определяется выражением,...

- 1)+ E1 E2
- 2) E1+E2
- 3) E1
- 4) E2

23. Излучение лазера: 1) когерентно; 2) не когерентно; 3) монохроматично; 4) не монохроматично; 5) направленно; 6) изотропно.

- 1) 1,4и5
- 2) 2,4и6
- **3)**+ 1, 3 и 5
- 4) 2, 3 и 6

24. Сколько всего нуклонов содержится в ядре атомов изотопа урана?

- 1) 92
- **2)+** 235
- 3) 143
- 4) 327

23. лдро ур	ана испытывает последовательно один альфа-распад и два оета-распада. В какое ядро оно превращается:
	$^{238}_{92}U$
1)+	$^{234}_{92}U$
2)	$_{93}^{239}Np$
3)	$^{234}_{90}Th$
4)	$^{234}_{91}Pa$
26. Сколько	нейтронов содержится в ядре атома изотопа лития ?
	$^{7}_{3}Li$
1) 10	
2) 7	
3)+ 4	
4) 3	
	авьте величину ядерных сил, действующих внутри ядра между двумя протонами (Fpp), двумя нейтронами (Fnn), и между в нейтроном (Fpn)
1) (F	(pp) < (Fnn) < (Fpn)
2) (F	(pp) = (Fnn) > (Fpn)
3) + (F	(pp) = (Fnn) = (Fpn)
4) (F	(pp) > (Fnn) > (Fpn)
28. Какой ч	астицей бомбардирован дейтерий в ядерной реакции 2H +? → 1H +1n?
1) не	ейтроном
2) + га	мма — квантом
3) эл	лектроном
4) пр	отоном
29. Сколько	энергии (Дж) выделят при аннигиляции 1 кг вещества и 1 кг антивещества. Скорость света с = 3•108 м/с.
1) + 1,8	8•1017
2) 3,6	6•1017
3) 2•	1016
4) 2,5	5•1016
	е наблюдения было 8 млн. радиоактивных ядер. Через 30 суток остался 1 млн. Чему равен период полураспада (сут) циоактивного изотопа?
1)+	10
2)	5
3)	15
4)	20
31. Какое ко	оличество энергии (Дж) выделится при аннигиляции 2 г антивещества с 2 г вещества? Скорость света с = 3•108 м/с
1)+ 18	B•1013
2) 19	9• 1013
3) 10	013
4) 9•	1013

32. При термоядерной реакции выделяется энергия 17,4 МэВ. Оцените энергию (МэВ), которая выделяется при синтезе 80 г гелия с использованием этой реакции? Число Авогадро - 6,02•1023 моль-1			
	$^{2}_{1}H +^{3}_{1}H \rightarrow^{4}_{2}He +^{1}_{0}n$		
1)	2,2•1023		
2)	1,8•1025		
3)+	21•1025		
4)	2,2•1025		

- 33. Какова средняя плотность нейтрона (кг/м3), если его масса равна 1,6•10-27 кг, а радиус 10-15 м?
 - 1) 6,4•1017
 - 2) 1,6•1017
 - **3)**+ 4•1017
 - 4) 8•1018
- 34. Что происходит с ядром в процессе альфа-распада?
 - 1)+ массовое число ядра уменьшается на 4 а.е.м., атомный номер элемента уменьшается на 2
 - 2) массовое число не меняется, атомный номер элемента увеличивается на 1
 - 3) массовое число и атомный номер элемента не меняются
 - 4) массовое число увеличивается на 1, атомный номер элемента не меняется
- 35. Ядро какого изотопа образуется в результате ядерной реакции: ?

- 36. В какое атомное ядро превращается ядро азота, поглощая нейтрон в ядерной реакции?
- **37.** В результате облучения нейтронами изотопа серы из облучаемого образца вылетают протоны . Во что превращается сера в результате данной ядерной реакции?

	1_1H
1)	$^{32}_{17}Cl$
2)	$^{32}_{18}Ar$
3)+	31 15 P
4)	$^{32}_{14}Si$

38. Что т	акое ядерный реактор? Это устройство, в котором
1)	ядерная энергия превращается непосредственно в электрическую
2)+	осуществляется управляемая цепная реакция деления тяжелых ядер
3)	происходит управляемый синтез легких ядер
4)	происходит управляемый α-распад ядер
	я работа A (Дж) совершается при изобарном нагревании инертного газа аргона (μ=40 г/моль) массой m=200 г на ΔT =8 K? к/(моль•K).
1)	398
2)+	332
3)	299
4)	349
	е из перечисленных ниже веществ обычно используются в ядерных реакторах в качестве ядерного горючего? 1) уран; 2) 3) кадмий; 4) тяжелая вода; 5) бор; 6) плутоний.
1)	4 и 5
2)	2 и 3
3)	1
4)+	1 и 6
	ом из перечисленных ниже приборов для регистрации ядерных излучений прохождение быстрой заряженной частицы т появление импульса электрического тока в газе?
1)	в камере Вильсона
2)+	в счетчике Гейгера
3)	в пузырьковой камере
4)	в толстослойной фотоэмульсии
42. Из ка	ких частиц состоят атомные ядра? Из
1)	нейтронов и электронов
2)	только из нейтронов
3)+	протонов и нейтронов
4)	протонов и электронов
 увели умень не зав 	е из следующих утверждений верны? Средний период полураспада: чивается с увеличением массы радиоактивного образца; шается со временем; исит ни от каких химических превращений данного образца; ит от химических превращений радиоактивного образца.
1)	1
2)	2
3)+	3
4)	1, 2
44. Числ	о нейтронов в ядре атома тория равно?
	$^{234}_{90}Th$
1)	90
2)	255
3)+	144
4)	324

45. Принимая энергию покоя электрона ркинетической энергии 1 МэВ.	равной 0,5 МэВ, а его массу – 9•10-31 кг, определите массу электрона (кг) при его
1) 3,6•10-30	
2) 18•10-31	
3) 9•10-31	
4) + 2,7•10-30	
	ките минимальное значение кинетической энергии (МэВ), при котором электрон станет на 0,511 МэВ, а масса покоя протона mp=1836me.
1) 900	
2) 1500	
3) 500	
4) + 1100	
47. Сколько электронов находится в элек	ктронной оболочке двухзарядного положительного иона дейтерия?
1)+ такого иона не может быть	
2) 1	
3) 2	
4) 0	
•	стронной оболочке однозарядного положительного иона изотопа углерода ?
	$_{6}^{14}C$
1) 7	
2) 6	
3)+ 5	
4) 13	
49. Сколько электронов содержится в эле	ектронной оболочке двухзарядного положительного иона трития ?
	3_1H
1)+ такого иона не бывает	# 1596/02P
2) 2	
3) 0	
4) 1	
50. Сколько электронов находится в элек протонов.	стронной оболочке однозарядного отрицательного иона хлора? В ядре хлора содержится 17
1) такого иона не может быть	
2) 16	
3)+ 18	
4) 17	
51. Оцените, во сколько примерно раз ди	наметр атома больше диаметра его ядра.
1) 100	1 74
2) + 10000	
3) 1000	
4) 10	
•	
52. Оцените, во сколько примерно раз ма	ісса атома оольше массы своего ядра.
1) 10	
2) 100	
3) 1000	
4)+ масса атома лишь незначительн	но превышает массу своего ядра

 53. Укажите все верные утверждения. 1) в ядре сосредоточена практически вся масса атома; 2) практически вся масса атома сосредоточена в его электронной оболочке; 3) масса атома примерно пополам делится между ядром и электронной оболочкой; 4) размеры атома во много раз больше размеров электронной оболочки; 5) размеры атома во много раз меньше размеров электронной оболочки; 6) размеры атома – это и есть размеры электронной оболочки.
1)+ 1 и 6
2) 2 и 4
3) 3и5
4) 1 и 4
54. В опытах Резерфорда альфа-частицы рассеивались в основном
1) полем ядерных сил
2)+ электростатическим полем атомных ядер
3) электронной оболочкой атомов
4) магнитным полем, которое создаётся орбитальным движением электронов
55. Сопоставьте скорости электрона на первой, второй и третьей стационарных орбитах атома водорода.
1) ?1 = ?2 = ?3
2) ?1 = ?2 > ?3
3)+ ?1 > ?2 > ?3
4) ?1 < ?2 < ?3
56. Сопоставьте кинетические энергии электрона на первой, второй и третьей стационарных орбитах атома водорода.
1)+ $E_K1 > E_K2 > E_K3$
2) $E_{K}1 < E_{K}2 < E_{K}3$
3) $E_K 1 = E_K 2 = E_K 3$
4) $E\kappa 1 = E\kappa 3 > E\kappa 2$
57. Сопоставьте потенциальные энергии электрона на первой, второй и третьей стационарных орбитах атома водорода.
1) $E\pi 1 = E\pi 2 = E\pi 3$
2) Eπ1 > Eπ2 > Eπ3
3) $E\pi 1 = E\pi 3 > E\pi 2$
4)+ Eπ1 < Eπ2 < Eπ3
58. Сколько электронов находится в электронной оболочке однозарядного положительного иона натрия? В ядре натрия содержится 11 протонов.
1)+ 10
2) 13

 $_2^4 He$

59. Сколько электронов содержится в электронной оболочке двухзарядного положительного иона гелия .

3)

4)

1)

2)

3)

4)+

12

11

1

2

3

0

60. Скол	ько электронов находится в электронной оболочке атом	ма изотопа ?
		$^{238}_{92}U$
1)	146	
2)+	92	
3)	330	
4)	238	
61. Скол	ько электронов находится в электронной оболочке одн	озарядного отрицательного иона ?
		$^{35}_{17}Cl$
1)	16	
2)+	18	
3)	34	
4)	17	
62. Скол	ько нейтронов содержится в ядре урана ?	
		$^{235}_{92}U$
1)	235	92 😋
-	· 143	
3)	92	
4)		
	ько протонов содержится в ядре ?	
03. CKO/		197 Acr
45		$^{197}_{79}Au$
-	118	
	. 79	
-	197	
	276	
64. Скол	ько нуклонов содержится в ядре ?	64 cv
		$^{64}_{29}Cu$
	- 64	
2)	35	
3)	29	
4)	93	
65. Опре	еделите число протонов и массовое число ядра, которос	е получается из ядра в результате двух альфа- и двух бета-распадов.
		$^{238}_{92}U$
	90; 230	
2)	88; 232	
3)	90; 226	
4)	88; 230	
66. Скол	ько альфа- и сколько бета-распадов происходит в проц	
		$_{82}^{206}Pb$
1)	3α, β	
2)+	- 2α, 2β	
3)	α, 3β	
4)	2α, 3β	

67. Какая частица вылетает из ядра в следующей ядерной реакции?

$$^{27}_{13}Al + \gamma \rightarrow ^{26}_{12}Mg +$$

- 1) альфа-частица
- 2) нейтрон
- 3) дейтрон
- **4)**+ протон

68. В начале эксперимента было сто миллионов атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа распадутся за время, равное половине его периода полураспада?

- 1) 7•107
- 2) 6•107
- 3) 4•107
- **4)**+ 3•107

1)

69. Какое ядро образуется в результате приведённой ядерной реакции?

$$^{7}_{3}Li + ^{4}_{2}He \rightarrow ? + n$$
 $^{9}_{4}Be$
 $^{14}_{M}$

- ^{14}N
- $\begin{array}{c} ^{10}B \\ ^{4)} \end{array}$

70. В начале эксперимента было сто миллионов атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа останутся не распавшимися за время, равное половине его периода полураспада?

- 1) 4•107
- 2) 6•107
- **3)+** 7•107
- 4) 3•107

71. Какой частицей бомбардируется ядро, если в результате ядерной реакции образуется ядро и вылетает нейтрон?

- **1)**+ дейтрон
- 2) протон
- 3) гамма-квант
- 4) нейтрон

72. Сколько нейтронов содержится в ядре атома изотопа лития?

 $_{3}^{7}Li$

- 1) 10
- 2)+ 4
- 3) 3
- 4) 7

	зультате облучения нейтронами изотопа серы из облучаемого образца вылетают протоны . Во что превращается сера в те данной ядерной реакции?
	1_1H
1)+	$^{32}_{15}P$
2)	$^{32}_{17}Cl$
3)	$^{32}_{14}Si$
4)	$^{32}_{18}Ar$
	чале эксперимента был миллиард атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа распадётся за время, вум периодам полураспада?
1)	2,5•108
2)	5•108
3)+	7,5•108
4)	8,75•108
	чале эксперимента был миллиард атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа останутся не имися за время, равное двум периодам полураспада?
1)	5•108
2)+	2,5•108
3)	7,5•108
4)	8,75•108
	чале эксперимента было десять миллиардов атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа распадётся , равное трём периодам полураспада?
1)	5•109
2)	2,5•109
3)+	8,75•109
4)	7,5•109
77. Како	й частицей бомбардирован дейтерий в ядерной реакции 2H+? → 1H + 1n?
1)+	гамма — квантом
2)	нейтроном
3)	протоном
4)	электроном
	уется следующие ядра расщепить на отдельные нуклоны: 1) ; 2) ; 3) . Для расщепления, которого из этих ядер потребуется всего энергии?
	$^{206}_{82}Pb$
1)	для их расщепления потребуется одинаковое количество энергии
2)	${}^7_3Li.$
3)+	
4)	$^{56}_{26}Fe$

	оставьте величину ядерных сил, действующих внутри ядра между двумя протонами (Fpp), двумя нейтронами (Fnn), и между м и нейтроном (Fpn)
1)+	(Fpp) = (Fnn) = (Fpn)
2)	(Fpp) = (Fnn) > (Fpn)
3)	$(Fpp) \le (Fnn) \le (Fpn)$
4)	(Fpp) > (Fnn) > (Fpn)
	нале эксперимента было десять миллиардов атомов радиоактивного изотопа. Сколько атомных ядер этого изотопа останутся не имися за время, равное трём периодам полураспада?
1)+	1,25•109
2)	2,5•109
3)	5•109
4)	7,5•109
81. Устан	новите недостающего участника ядерной реакции: .
	$^{14}_{7}N+? ightarrow ^{17}_{8}O+^{1}_{1}H$
1)	дейтрон
2)	нейтрон
3)+	альфа-частица
4)	ядро 3Не
	нале наблюдения было 8 млн. радиоактивных ядер. Через 30 суток остался 1 млн. Чему равен период полураспада (сут) радиоактивного изотопа?
1)	5
2)	15
3)+	10
4)	20
83. Скол	ько нейтронов в ядре изотопа ?
	238II
1)	330
,	238
	146
4)	
ŕ	
04. CKO/I	ько всего нуклонов содержится в ядре атома изотопа урана ?
	$^{235}_{92}U$
1)	143
2)+	235
3)	92
4)	327
85. Скол	ько протонов содержится в ядре изотопа ?
	$^{14}_{6}C$
1)+	6
2)	14
3)	8
4)	20

86. Укажите неизвестный продукт ядерной реакции: .

$${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + x$$

- 1) электрон
- **2)**+ нейтрон
- 3) гамма-квант
- 4) протон

87. Энергия связи дейтрона равна 2,2 МэВ. Определите его дефект масс (кг).

- 1) 3,9•10-29
- 2) 3,9•10-28
- 3) 3,9•10-27
- **4)**+ 3,9•10-30

88. У какого из приведенных ниже ядер: , ; и удельная энергия связи (т.е. энергия связи, приходящаяся на один нуклон) самая большая?

$$^{206}_{82}Pb$$

1) у всех трёх ядер она одинакова

2)+

 $_{26}^{56}Fe$

3)

 $^{206}_{82} Pb$

4)

 $_{3}^{7}Li$

89. За 4 года распалось 75% имевшегося радиоактивного изотопа. Каков его период полураспада (лет)?

- 1)
- **2)**+ 2
- 3) 3
- 4) 1

90. Ядро полония в результате α и β распадов превращается в стабильный изотоп свинца . Сколько при этом происходит α и β распадов?

$$^{206}_{82}Pb$$

- 1) $\alpha 2, \beta 0$
- 2) α 0, β 2
- **3)**+ α 2, β 2
- 4) $\alpha 2, \beta 4$

91. Сколько электронов содержится в ядре изотопа?

 $^{60}_{27}Co'$

- 1) 33
- 2) 27
- 3) 60
- **4)**+ 0

92. Ядро урана испытывает последовательно один альфа-распад и два бета-распада. В какое ядро оно превращается?

	$^{238}_{92}U$
1)+	$^{234}_{92}U$
2)	$_{93}^{239}Np$
3)	$^{234}_{91}Pa$
4)	$^{234}_{90}Th$
	generated at <u>geetest.ru</u>