GeeTest

Смесь недостатков и безумия.

10
Рейтинг
9
статей
133
теста
0
комментариев
112.5k
тренировок
670.4k
тестирований
Новости
GeeTest
1 неделю назад

Важное уведомление: плановое обновление GeeTest

Дорогие друзья!

Планируется большое обновление GeeTest. Работа по обновлению будет произведена в период с 1 по 4 ноября. В эти дни работа сайта будет временно приостановлена.

Важное уведомление: плановое обновление GeeTest

Важно!
Сейчас пароли от аккаунтов хрянятся в базе данных в виде хэша, как это положено. То есть прямого или косвенного доступа к ним у меня нет.
В новой версии сайта механизм авторизации пользователей полностью обновлён согласно современным требованиям информационной безопасности.
Пароли хрянятся также в виде хэша, но с новым алгоритмом хэширования. Поэтому пользователям, использующим для входа логин и пароль, потребуется обновить пароль.
Вход через соцсети продолжит работать в штатном режиме.

Обращаю ваше внимание: все данные пользователей будут сохранены. После завершения обновления функционал платформы будет работать в штатном режиме с улучшенными характеристиками.

Приношу извинения за возможные неудобства и благодарю за понимание.

По всем вопросам пишите на support@geetest.ru. Постараюсь минимизировать время простоя сервиса.

С уважением,
Сергей - разработчик GeeTest.

Физика
GeeTest
5 месяцев назад

Стандартная модель: основа современной физики частиц

Стандартная модель — это фундаментальная теория, описывающая элементарные частицы и три из четырёх известных фундаментальных взаимодействий: электромагнитное, слабое и сильное. Она объединяет результаты десятилетий экспериментов и представляет собой краеугольный камень физики высоких энергий.

Стандартная модель элементарных частиц
Стандартная модель элементарных частиц

Основные элементы

Стандартная модель включает:

1. Фермионы — частицы вещества:

  • Кварки (например, верхний и нижний), из которых состоят протоны и нейтроны.
  • Лептоны (в том числе электрон и нейтрино).

2. Бозоны — переносчики взаимодействий:

  • Фотон — переносит электромагнитное взаимодействие.
  • Глюоны — отвечают за сильное взаимодействие между кварками.
  • W- и Z-бозоны — обеспечивают слабое взаимодействие.
  • Хиггсовский бозон — придаёт массу другим частицам
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны.
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны.

Достижения

Стандартная модель предсказывала существование многих частиц, включая Хиггсовский бозон, который был обнаружен в 2012 году на Большом адронном коллайдере. Её предсказания с высокой точностью подтверждаются экспериментами.

Стандартная модель предсказывала существование многих частиц, включая Хиггсовский бозон, который был обнаружен в 2012 году на Большом адронном коллайдере.
Стандартная модель предсказывала существование многих частиц, включая Хиггсовский бозон, который был обнаружен в 2012 году на Большом адронном коллайдере.

Ограничения

Модель не объясняет:

  • гравитацию (её описывает Общая теория относительности),
  • тёмную материю и тёмную энергию,
  • массу нейтрино и их осцилляции,
  • асимметрию между веществом и антивеществом.

Заключение

Стандартная модель — мощная и проверенная теория, которая объясняет большинство наблюдаемых явлений в микромире. Однако её неполнота побуждает физиков искать «новую физику» за её пределами — в теориях, таких как суперсимметрия, теория струн и квантовая гравитация.

Физика
GeeTest
5 месяцев назад

Основы физики звука

Звук — неотъемлемая часть нашей повседневной жизни. Мы слышим голоса, музыку, шум дождя — но что именно стоит за этими звуками с точки зрения физики?

физика звука
физика звука

Что такое звук?

С научной точки зрения, звук — это механическая волна, которая возникает в результате колебаний частиц упругой среды. Это значит, что звук не может распространяться в пустоте (вакууме) — ему нужна среда: воздух, вода или твёрдые тела.

Когда источник звука (например, струна гитары или голосовые связки человека) начинает колебаться, он создаёт сжатия и разрежения в окружающей среде. Эти колебания передаются от частицы к частице, образуя продольную волну.

Основные характеристики звука

Звуковая волна описывается несколькими физическими параметрами:

  1. Частота (ν) — определяет высоту звука. Измеряется в герцах (Гц). Чем выше частота — тем выше звук.
  2. Амплитуда — определяет громкость звука. Большая амплитуда = громкий звук.
  3. Длина волны (λ) — расстояние между двумя одинаковыми точками соседних волн.
  4. Скорость звука (v) — зависит от среды. В воздухе при 20 °C она составляет примерно 343 м/с, в воде — около 1500 м/с, в стали — более 5000 м/с.

Как мы слышим звук?

Человеческое ухо улавливает звуковые волны, которые попадают в ушной канал, вибрируют барабанную перепонку и передаются во внутреннее ухо. Там они преобразуются в электрические импульсы и передаются в мозг, где и происходит восприятие звука.

Человеческое ухо улавливает частоты в диапазоне от 20 Гц до 20 000 Гц. Звуки ниже 20 Гц называются инфразвуком, выше — ультразвуком.

Звук в разных средах

  • В воздухе звук распространяется достаточно быстро, но теряет энергию из-за трения.
  • В воде звук распространяется быстрее, потому что частицы находятся ближе друг к другу.
  • В твёрдых телах скорость звука максимальна, так как молекулы плотно упакованы и передают колебания эффективнее.

Применения в жизни

  1. Музыка — колебания струн, мембран и воздуха создают звуки разных тонов и тембров.
  2. Ультразвук — используется в медицине (УЗИ), промышленности (дефектоскопия) и даже для отпугивания животных.
  3. Акустика зданий — учитывает отражение, поглощение и распространение звука.
  4. Шумоподавление — создание звуковой волны, противоположной по фазе, для гашения нежелательного шума.

Интересный факт

На Луне звук не распространяется — ведь там нет атмосферы, а значит, и среды, способной передать звуковые колебания. Там можно лишь "услышать" вибрации через контакт с объектом, но не по воздуху.

Заключение

Звук — это не просто ощущение, это физическое явление, в котором участвуют колебания, энергия и законы движения. Понимание физики звука важно для инженеров, музыкантов, врачей и всех, кто работает со звуком и технологиями.